Data structures and libraries

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon
Árangursrík forritun og lausn verkefna

School of Computer Science
Reykjavík University
Today we’re going to cover

- Basic data types
- Big integers
- Why we need data structures
- Data structures you already know
- Sorting and searching
- Using bitmasks to represent sets
- Common applications of the data structures
- Augmenting binary search trees
- Representing graphs
Basic data types

• You should all be familiar with the basic data types:
 • bool: a boolean (true/false)
 • char: an 8-bit signed integer (often used to represent characters with ASCII)
 • short: a 16-bit signed integer
 • int: a 32-bit signed integer
 • long long: a 64-bit signed integer
 • float: a 32-bit floating-point number
 • double: a 64-bit floating-point number
 • long double: a 128-bit floating-point number
 • string: a string of characters
Basic data types

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>1</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>-32768</td>
<td>32767</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>-2148364748</td>
<td>2147483647</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>-9223372036854775808</td>
<td>9223372036854775807</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>-2^{8n-1}</td>
<td>$2^{8n-1}-1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>8</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>0</td>
<td>$2^{8n} - 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>4</td>
<td>$\approx -3.4 \times 10^{38}$</td>
<td>$\approx 3.4 \times 10^{38}$</td>
<td>7 digits</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>$\approx -1.7 \times 10^{308}$</td>
<td>$\approx 1.7 \times 10^{308}$</td>
<td>14 digits</td>
</tr>
<tr>
<td>long double</td>
<td>16</td>
<td>$\approx -1.1 \times 10^{4932}$</td>
<td>$\approx 1.1 \times 10^{4932}$</td>
<td>18 digits</td>
</tr>
</tbody>
</table>
Big integers

• What if we need to represent and do computations with very large integers, i.e. something that doesn’t fit in a long long

• Simple idea: Store the integer as a string

• But how do we perform arithmetic on a pair of strings?

• We can use the same algorithms as we learned in elementary school
 • Addition: Add digit-by-digit, and maintain the carry
 • Subtraction: Similar to addition
 • Multiplication: Long multiplication
 • Division: Long division
 • Modulo: Long division
Example problem: Simple Addition

• https://open.kattis.com/problems/simpleaddition
Why do we need data structures?

- Sometimes our data needs to be organized in a way that allows one or more of
 - Efficient querying
 - Efficient inserting
 - Efficient deleting
 - Efficient updating

- Sometimes we need a better way to represent our data
 - How do we represent large integers?
 - How do we represent graphs?

- Data structures help us achieve those things
Data structures you’ve seen before

- Static arrays
- Dynamic arrays
- Linked lists
- Stacks
- Queues
- Priority queues
- Sets
- Maps
Data structures you’ve seen before

- Static arrays - `int arr[10]`
- Dynamic arrays - `vector<int>`
- Linked lists - `list<int>`
- Stacks - `stack<int>`
- Queues - `queue<int>`
- Priority queues - `priority_queue<int>`
- Sets - `set<int>`
- Maps - `map<int, int>`
Data structures you’ve seen before

- Static arrays - `int arr[10]`
- Dynamic arrays - `vector<int>`
- Linked lists - `list<int>`
- Stacks - `stack<int>`
- Queues - `queue<int>`
- Priority queues - `priority_queue<int>`
- Sets - `set<int>`
- Maps - `map<int, int>`

- Usually it’s best to use the standard library implementations
 - Almost surely bug-free and fast
 - We don’t need to write any code
- Sometimes we need our own implementation
 - When we want more flexibility
 - When we want to customize the data structure
Sorting and searching

- Very common operations:
 - Sorting an array
 - `sort(arr.begin(), arr.end())`
 - Searching an unsorted array
 - `find(arr.begin(), arr.end(), x)`
 - Searching a sorted array
 - `lower_bound(arr.begin(), arr.end(), x)`

- Again, usually in the standard library

- We’ll need different versions of binary search later which need custom code, but `lower_bound` is enough for now
Sorting and searching

- Very common operations:
 - Sorting an array - `sort(arr.begin(), arr.end())`
 - Searching an unsorted array - `find(arr.begin(), arr.end(), x)`
 - Searching a sorted array - `lower_bound(arr.begin(), arr.end(), x)`

- Again, usually in the standard library

- We’ll need different versions of binary search later which need custom code, but `lower_bound` is enough for now
Representing sets

- We have a small \(n \leq 30 \) number of items
- We label them with integers in the range 0, 1, ..., \(n - 1 \)
- We can represent sets of these items as a 32-bit integer
- The \(i \)th item is in the set represented by the integer \(x \) if the \(i \)th bit in \(x \) is 1
- Example:
 - We have the set \(\{0, 3, 4\} \)
 - \texttt{int } x = (1<<0) \mid (1<<3) \mid (1<<4);
Representing sets

- Empty set: 0
- Single element set: \(1 \ll i\)
- The universe set (i.e. all elements): \((1 \ll n) - 1\)
- Union of sets: \(x \mid y\)
- Intersection of sets: \(x \& y\)
- Complement of a set: \(\sim x \& ((1 \ll n) - 1)\)
• Check if an element is in the set:

```java
if (x & (1<<i)) {
    // yes
} else {
    // no
}
```
Representing sets

- Why do this instead of using `set<int>`?
- Very lightweight representation
- All subsets of the n elements can be represented by integers in the range $0 \ldots 2^n - 1$
- Allows for easily iterating through all subsets (we’ll see this later)
- Allows for easily using a set as an index of an array (we’ll see this later)
Applications of Arrays and Linked Lists

- Too many to list
- Most problems require storing data, usually in an array
Applications of Stacks

- Processing events in a last-in first-out order
- Simulating recursion
- Depth-first search in a graph
- Reverse a sequence
- Matching brackets
- And a lot more
Example problem: Backspace

- https://open.kattis.com/problems/backspace
Applications of Queues

- Processing events in a first-in first-out order
- Breadth-first search in a graph
- And a lot more
Applications of Priority Queues

- Processing events in order of priority
- Finding a shortest path in a graph
- Some greedy algorithms
- And a lot more
Applications of Sets

- Keep track of distinct items
- Have we seen an item before?
- If implemented as a binary search tree:
 - Find the successor of an element (the smallest element that is greater than the given element)
 - Count how many elements are less than a given element
 - Count how many elements are between two given elements
 - Find the kth largest element
- And a lot more
Applications of Maps

- Associating a value with a key
- As a frequency table
- As a memory when we’re doing Dynamic Programming (later)
- And a lot more
• Sometimes we can store extra information in our data structures to gain more functionality
• Usually we can’t do this to data structures in the standard library
• Need our own implementation that we can customize
• Example: Augmenting binary search trees
Augmenting Binary Search Trees

- We have a binary search tree and want to efficiently:
 - Count number of elements $< x$
 - Find the kth smallest element
- Naive method is to go through all vertices, but that is slow: $O(n)$
Augmenting Binary Search Trees

- Idea: In each vertex store the size of the subtree
- This information can be maintained when we insert/delete elements without increasing time complexity
• Count number of elements < 38
 • Search for 38 in the tree
 • Count the vertices that we pass by that are less than x
 • When we are at a vertex where we should go right, get the size of the left subtree and add it to our count
Augmenting Binary Search Trees

- Count number of elements < 38
 - Search for 38 in the tree
 - Count the vertices that we pass by that are less than x
 - When we are at a vertex where we should go right, get the size of the left subtree and add it to our count

- Time complexity $O(\log n)$
• Find \(k \)th smallest element
 • We’re on a vertex whose left subtree is of size \(m \)
 • If \(k = m + 1 \), we found it
 • If \(k \leq m \), look for the \(k \)th smallest element in the left subtree
 • If \(k > m + 1 \), look for the \(k - m - 1 \)st smallest element in the right subtree
Augmenting Binary Search Trees

- Find \(k \)th smallest element
 - We’re on a vertex whose left subtree is of size \(m \)
 - If \(k = m + 1 \), we found it
 - If \(k \leq m \), look for the \(k \)th smallest element in the left subtree
 - If \(k > m + 1 \), look for the \(k - m - 1 \)st smallest element in the right subtree
- Example: \(k = 11 \)
Representing graphs

- There are many types of graphs:
 - Directed vs. undirected
 - Weighted vs. unweighted
 - Simple vs. non-simple

- Many ways to represent graphs
- Some special graphs (like trees) have special representations
- Most commonly used (general) representations:
 1. Adjacency list
 2. Adjacency matrix
 3. Edge list
vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
adj[3].push_back(2);
Adjacency matrix

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

```c
bool adj[4][4];
adj[0][1] = true;
adj[0][2] = true;
adj[1][0] = true;
adj[1][2] = true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
adj[3][2] = true;
```
Edge list

0, 1
0, 2
1, 2
2, 3

vector<pair<int, int> > edges;
edges.push_back(make_pair(0, 1));
edges.push_back(make_pair(0, 2));
edges.push_back(make_pair(1, 2));
edges.push_back(make_pair(2, 3));
Efficiency

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adjacency list</th>
<th>Adjacency matrix</th>
<th>Edge list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Add vertex</td>
<td>$O(1)$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Add edge</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remove vertex</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>Remove edge</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>Query: are u, v adjacent?</td>
<td>$O(</td>
<td>V</td>
<td>)$</td>
</tr>
</tbody>
</table>

- Different representations are good for different situations
Example problem: Grandpa Bernie

- https://open.kattis.com/problems/grandpabernie