Mathematics

Tómas Ken Magnússon
Bjarki Ágúst Guðmundsson

Árangursrík forritun og lausn verkefna

School of Computer Science
Reykjavík University
Today we’re going to cover

Basics

Number Theory

Combinatorics

Game Theory
Basics
Computer Science ⊂ Mathematics
• Usually at least one problem that involves solving mathematically.
• Problems often require mathematical analysis to be solved efficiently.
• Using a bit of math before coding can also shorten and simplify code.
Some problems have solutions that form a pattern.
Finding patterns and formulas

• Some problems have solutions that form a pattern.
• By finding the pattern, we solve the problem.
• Could be classified as mathematical ad-hoc problem.
• Requires mathematical intuition.
Some problems have solutions that form a pattern.
By finding the pattern, we solve the problem.
Could be classified as mathematical ad-hoc problem.
Requires mathematical intuition.
Useful tricks:
- Solve some small instances by hand.
- See if the solutions form a pattern.
Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
 - Solve some small instances by hand.
 - See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem?
Finding patterns and formulas

• Some problems have solutions that form a pattern.
• By finding the pattern, we solve the problem.
• Could be classified as mathematical ad-hoc problem.
• Requires mathematical intuition.
• Useful tricks:
 • Solve some small instances by hand.
 • See if the solutions form a pattern.
• Does the pattern involve some overlapping subproblem?
 We might need to use DP.
Finding patterns and formulas

• Some problems have solutions that form a pattern.
• By finding the pattern, we solve the problem.
• Could be classified as mathematical ad-hoc problem.
• Requires mathematical intuition.
• Useful tricks:
 • Solve some small instances by hand.
 • See if the solutions form a pattern.
• Does the pattern involve some overlapping subproblem? We might need to use DP.
• Knowing reoccurring identities and sequences can be helpful.
Arithmetic progression

- Often we see a pattern like

\[2, 5, 8, 11, 14, 17, 20, \ldots \]
Arithmetic progression

- Often we see a pattern like

 \[2, 5, 8, 11, 14, 17, 20, \ldots\]

- This is called a arithmetic progression.

\[a_n = a_{n-1} + c\]
• Depending on the situation we may want to get the \(n \)-th element

\[
a_n = a_1 + (n - 1)c
\]

• Or the sum over a finite portion of the progression

\[
S_n = \frac{n(a_1 + a_n)}{2}
\]
Arithmetic progression

- Depending on the situation we may want to get the \(n \)-th element

\[
a_n = a_1 + (n - 1)c
\]

- Or the sum over a finite portion of the progression

\[
S_n = \frac{n(a_1 + a_n)}{2}
\]

- Remember this one?

\[
1 + 2 + 3 + 4 + 5 + \ldots + n = \frac{n(n + 1)}{2}
\]
• Other types of pattern we often see are geometric progressions

1, 2, 4, 8, 16, 32, 64, 128, …
• Other types of pattern we often see are geometric progressions

\[1, 2, 4, 8, 16, 32, 64, 128, \ldots \]

• More generally

\[a, ar, ar^2, ar^3, ar^4, ar^5, ar^6, \ldots \]

\[a_n = ar^{n-1} \]
Geometric progression

- Sum over a finite portion

\[\sum_{i=0}^{n} ar^i = \frac{a(1 - r^n)}{(1 - r)} \]
Geometric progression

- Sum over a finite portion

\[\sum_{i=0}^{n} ar^i = \frac{a(1 - r^n)}{(1 - r)} \]

- Or from the \(m\)-th element to the \(n\)-th

\[\sum_{i=m}^{n} ar^i = \frac{a(r^m - r^{n+1})}{(1 - r)} \]
• Sometimes doing computation in logarithm can be an efficient alternative.
Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++ (<cmath>) and Java (java.lang.Math) we have the natural logarithm
  ```c++
  double log(double x);
  ```
Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.

- In both C++(<cmath>) and Java(java.lang.Math) we have the natural logarithm

  ```
  double log(double x);
  ```

 and logarithm in base 10

  ```
  double log10(double x);
  ```
• Sometimes doing computation in logarithm can be an efficient alternative.

• In both C++(<cmath>) and Java(<java.lang.Math>) we have the natural logarithm
  ```
  double log(double x);
  ```
 and logarithm in base 10
  ```
  double log10(double x);
  ```
• And also the exponential
  ```
  double exp(double x);
  ```
• For example, what is the first power of 17 that has k digits in base b?
• For example, what is the first power of 17 that has \(k \) digits in base \(b \)?

• **Naive solution:** Iterate over powers of 17 and count the number of digits.
For example, what is the first power of 17 that has \(k \) digits in base \(b \)?

Naive solution: Iterate over powers of 17 and count the number of digits.

But the powers of 17 grow exponentially!

\[
17^{16} > 2^{64}
\]

What if \(k = 500 \) (\(\sim 1.7 \cdot 10^{615} \)), or something larger?

• For example, what is the first power of 17 that has \(k \) digits in base \(b \)?

• **Naive solution:** Iterate over powers of 17 and count the number of digits.

• But the powers of 17 grow exponentially!

\[
17^{16} > 2^{64}
\]

• What if \(k = 500 \ (\sim 1.7 \cdot 10^{615}) \), or something larger?

• Impossible to work with the numbers in a normal fashion.

• Why not log?
• Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.

• But how do we do this with only \ln or \log_{10}?

• Change base!

$\log_b(a) = \frac{\log_d(a)}{\log_d(b)} = \frac{\ln(a)}{\ln(b)}$.

• Now we can at least count the length without converting bases.
• Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.

• But how do we do this with only \ln or \log_{10}?
• Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.

• But how do we do this with only \ln or \log_{10}?

• Change base!

$$\log_b(a) = \frac{\log_d(a)}{\log_d(b)} = \frac{\ln(a)}{\ln(b)}$$

• Now we can at least count the length without converting bases
• We still have to iterate over the powers of 17, but we can do that in log

\[\ln(17^{x-1} \cdot 17) = \ln(17^{x-1}) + \ln(17) \]
Example

- We still have to iterate over the powers of 17, but we can do that in log
 \[\ln(17^{x-1} \cdot 17) = \ln(17^{x-1}) + \ln(17) \]

- More generally
 \[\log_b(xy) = \log_b(x) + \log_b(y) \]

- For division
 \[\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \]
• We can simplify this even more.
• The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$
• We can simplify this even more.
• The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$

• One more handy identity

$$\log_b(a^c) = c \cdot \log_b(a)$$
• We can simplify this even more.

• The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$

• One more handy identity

$$\log_b(a^c) = c \cdot \log_b(a)$$

• Using this identity and the ones we’ve covered, we get

$$x = \left\lceil (k - 1) \cdot \frac{\ln(10)}{\ln(17)} \right\rceil$$
Base conversion

- Speaking of bases.
• Speaking of bases.
• What if we actually need to use base conversion?
Base conversion

• Speaking of bases.
• What if we actually need to use base conversion?
• Simple algorithm

  ```cpp
  vector<int> toBase(int base, int val) {
    vector<int> res;
    while(val) {
      res.push_back(val % base);
      val /= base;
    }
    return val;
  }
  ```

• Starts from the 0-th digit, and calculates the multiple of each power.
• Comparing doubles, sounds like a bad idea.

const double EPS = 1e-9;
if (abs(a - b) < EPS) {
...
• Comparing doubles, sounds like a bad idea.
• What else can we do if we are working with real numbers?
• Comparing doubles, sounds like a bad idea.
• What else can we do if we are working with real numbers?
• We compare them to a certain degree of precision.
• Comparing doubles, sounds like a bad idea.
• What else can we do if we are working with real numbers?
• We compare them to a certain degree of precision.
• Two numbers are deemed equal if their difference is less than some small epsilon.

```cpp
const double EPS = 1e-9;

if (abs(a - b) < EPS) {
    ...
}
```
Working with doubles

- Less than operator:
  ```java
  if (a < b - EPS) {
    ...
  }
  ```

- Less than or equal:
  ```java
  if (a < b + EPS) {
    ...
  }
  ```

- The rest of the operators follow.
Working with doubles

- This allows us to use comparison based algorithms.

```cpp
struct cmp {
  bool operator<(double a, double b) { return a < b - EPS; }
};
set<double, cmp> doubleSet();
```
Working with doubles

- This allows us to use comparison based algorithms.
- For example `std::set<double>`.
  ```cpp
  struct cmp {
    bool operator()(double a, double b) {
      return a < b - EPS;
    }
  };
  
  set<double, cmp> doubleSet();
  
  - Other STL containers can be used in similar fashion.
Number Theory
Problem statements often end with the sentence

“... and output the answer modulo n.”
Problem statements often end with the sentence

“... and output the answer modulo n.”

This implies that we can do all the computation with integers modulo n.
Modular arithmetic

- Problem statements often end with the sentence
  “... and output the answer modulo n.”

- This implies that we can do all the computation with integers
  modulo $n$.
- The integers, modulo some $n$ form a structure called a ring.
Modular arithmetic

- Problem statements often end with the sentence
  
  "... and output the answer modulo n."

- This implies that we can do all the computation with integers 
  \textit{modulo } n.

- The integers, modulo some $n$ form a structure called a \textit{ring}.

- Special rules apply, also loads of interesting properties.
Some of the allowed operations:

- Addition and subtraction modulo $n$
  
  \[(a \mod n) + (b \mod n) = (a + b \mod n)\]
  
  \[(a \mod n) - (b \mod n) = (a - b \mod n)\]

- Multiplication
  
  \[(a \mod n)(b \mod n) = (ab \mod n)\]

- Exponentiation
  
  \[(a \mod n)^b = (a^b \mod n)\]

- Note: We are only working with integers.
• What about division?

- We could end up with a fraction!
- Division with $k$ equals multiplication with the multiplicative inverse of $k$.
- The multiplicative inverse of an integer $a$, is the element $a^{-1}$ such that $a \cdot a^{-1} = 1 \pmod{n}$. 

---

23
Modular arithmetic

- What about division? NO!

  • Division with $k$ equals multiplication with the multiplicative inverse of $k$. The multiplicative inverse of an integer $a$, is the element $a^{-1}$ such that $a \cdot a^{-1} = 1 \pmod{n}$. 


Modular arithmetic

- What about division? **NO!**
- We could end up with a fraction!
- Division with $k$ equals multiplication with the *multiplicative inverse* of $k$.
• What about division? **NO!**
• We could end up with a fraction!
• Division with $k$ equals multiplication with the *multiplicative inverse* of $k$.
• The *multiplicative inverse* of an integer $a$, is the element $a^{-1}$ such that

$$a \cdot a^{-1} = 1 \pmod{n}$$
Modular arithmetic

- What about logarithm?
Modular arithmetic

- What about logarithm? **YES!**
  - But difficult.
What about logarithm? **YES!**
- But difficult.
- Basis for some cryptography such as elliptic curve, Diffie-Hellmann.
- Google “Discrete Logarithm” if you want to know more.
• **Prime number** is a positive integer greater than 1 that has no positive divisor other than 1 and itself.

• **Greatest Common Divisor** of two integers $a$ and $b$ is the largest number that divides both $a$ and $b$.

• **Least Common Multiple** of two integers $a$ and $b$ is the smallest integer that both $a$ and $b$ divide.

• **Prime factor** of an positive integer is a prime number that divides it.

• **Prime factorization** is the decomposition of an integer into its prime factors. By the fundamental theorem of arithmetics, every integer greater than 1 has a unique prime factorization.
The Euclidean algorithm is a recursive algorithm that computes the GCD of two numbers.

```c
int gcd(int a, int b){
 return b == 0 ? a : gcd(b, a % b);
}
```

- Runs in $O(\log^2 N)$.
- Notice that this can also compute $\text{lcm}(a, b) = a \cdot \frac{b}{\gcd(a, b)}$. 

See Wikipedia to see how it works and for proofs.
Extended Euclidean algorithm

- The Euclidean algorithm is a recursive algorithm that computes the GCD of two numbers.
  
  ```c
 int gcd(int a, int b){
 return b == 0 ? a : gcd(b, a % b);
 }
  ```

- Runs in $O(\log^2 N)$.

- Notice that this can also compute LCM

  $$\text{lcm}(a, b) = \frac{a \cdot b}{\text{gcd}(a, b)}$$

- See Wikipedia to see how it works and for proofs.
Extended Euclidean algorithm

- Reversing the steps of the Euclidean algorithm we get the Bézout’s identity

\[ \gcd(a, b) = ax + by \]

which simply states that there always exist \( x \) and \( y \) such that the equation above holds.
Extended Euclidean algorithm

- Reversing the steps of the Euclidean algorithm we get the Bézout’s identity

\[ \gcd(a, b) = ax + by \]

which simply states that there always exist \( x \) and \( y \) such that the equation above holds.

- The extended Euclidean algorithm computes the GCD and the coefficients \( x \) and \( y \).

- Each iteration it add up how much of \( b \) we subtracted from \( a \) and vice versa.
Extended Euclidean algorithm

```c++
int egcd(int a, int b, int& x, int& y) {
 if (b == 0) {
 x = 1;
 y = 0;
 return a;
 } else {
 int d = egcd(b, a % b, x, y);
 x -= a / b * y;
 swap(x, y);
 return d;
 }
}
```
Applications

- Essential step in the RSA algorithm.
- Essential step in many factorization algorithms.
- Can be generalized to other algebraic structures.
- Fundamental tool for proofs in number theory.
- Many other algorithms for GCD
Primality testing

- How do we determine if a number $n$ is a prime?
Primality testing

- How do we determine if a number $n$ is a prime?
- **Naive method:** Iterate over all $1 < i < n$ and check if $i | n$.
  - $O(N)$
Primality testing

• How do we determine if a number $n$ is a prime?
• **Naive method:** Iterate over all $1 < i < n$ and check if $i \mid n$.
  - $O(N)$
• **Better:** If $n$ is not a prime, it has a divisor $\leq \sqrt{n}$.
  - Iterate up to $\sqrt{n}$ instead.
  - $O(\sqrt{N})$
How do we determine if a number $n$ is a prime?

- **Naive method:** Iterate over all $1 < i < n$ and check if $i \mid n$.
  - $O(N)$

- **Better:** If $n$ is not a prime, it has a divisor $\leq \sqrt{n}$.
  - Iterate up to $\sqrt{n}$ instead.
  - $O(\sqrt{N})$

- **Even better:** If $n$ is not a prime, it has a prime divisor $\leq \sqrt{n}$
  - Iterate over the prime numbers up to $\sqrt{n}$
  - There are $\sim N / \ln(N)$ primes less $N$, therefore $O(\sqrt{N} / \log N)$. 
Primality testing

- Trial division is a deterministic primality test.
- Many algorithms that are probabilistic or randomized.
- Fermat test; uses Fermat’s little theorem.
- Probabilistic algorithms that can only prove that a number is composite such as Miller-Rabin.
- AKS primality test, the one that proved that primality testing is in $P$. 
• If we want to generate primes, using a primality test is very inefficient.
Prime sieves

• If we want to generate primes, using a primality test is very inefficient.
• Instead, our preferred method of prime generation is the sieve of Eratosthenes.
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.

Primes: $2, 3, 5, 7, 11, 13, 17, 19, 23$
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
    - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
    - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes:
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes:
2,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: 2,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
    - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
    - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: 2, 3,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: 2, 3,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
    - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
    - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

```
Primes: 2, 3, 5,
```
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

Primes:
2, 3, 5,
Prime sieves

• If we want to generate primes, using a primality test is very inefficient.

• Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  • For all numbers from 2 to $\sqrt{n}$:
  • If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  • The unmarked numbers are those that are not a multiple of any smaller number.
  • $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: 2, 3, 5,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: $2, 3, 5, 7,$
• If we want to generate primes, using a primality test is very inefficient.
• Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  • For all numbers from 2 to $\sqrt{n}$:
  • If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  • The unmarked numbers are those that are not a multiple of any smaller number.
  • $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes: 2, 3, 5, 7, 11,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
  - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

Primes:

2, 3, 5, 7, 11, 13,
Prime sieves

• If we want to generate primes, using a primality test is very inefficient.
• Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  • For all numbers from 2 to $\sqrt{n}$:
  • If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
  • The unmarked numbers are those that are not a multiple of any smaller number.
  • $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Primes:
2, 3, 5, 7, 11, 13, 17,
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
    - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
    - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

\[ \begin{array}{|c|c|c|c|c|}
\hline
 & 2 & 3 & 4 & 5 \\
\hline
6 & 7 & 8 & 9 & 10 \\
\hline
11 & 12 & 13 & 14 & 15 \\
\hline
16 & 17 & 18 & 19 & 20 \\
\hline
21 & 22 & 23 & 24 & 25 \\
\hline
\end{array} \]

Primes:
\[2, 3, 5, 7, 11, 13, 17, 19, \]
Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
  - For all numbers from 2 to $\sqrt{n}$:
    - If the number is not marked, iterate over every multiple of the number up to $n$ and mark them.
    - The unmarked numbers are those that are not a multiple of any smaller number.
  - $O(\sqrt{N} \log \log N)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Primes:
2, 3, 5, 7, 11, 13, 17, 19, 23
Sieve of Eratosthenes

```cpp
vector<int> eratosthenes(int n){
 bool *isMarked = new bool[n+1];
 memset(isMarked, 0, n+1);
 vector<int> primes;
 int i = 2;
 for(; i*i <= n; ++i)
 if (!isMarked[i]) {
 primes.push_back(i);
 for(int j = i; j <= n; j += i)
 isMarked[j] = true;
 }
 for (; i <= n; i++)
 if (!isMarked[i])
 primes.push_back(i);
 return primes;
}
```
The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.
The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

\[ n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \]
The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

\[ n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \]

We can therefore store integers as lists of their prime powers.
The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

\[ n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \]

We can therefore store integers as lists of their prime powers.

To factor an integer \( n \):

- Use the sieve of Eratosthenes to generate all the primes up \( \sqrt{n} \)
- Iterate over all the primes generated and check if they divide \( n \), and determine the largest power that divides \( n \).
map<int, int> factor(int N) {
    vector<int> primes;
    primes = eratosthenes(static_cast<int>(sqrt(N+1)));
    map<int, int> factors;
    for(int i = 0; i < primes.size(); ++i){
        int prime = primes[i], power = 0;
        while(N % prime == 0){
            power++;
            N /= prime;
        }
        if(power > 0){
            factors[prime] = power;
        }
    }
    if (N > 1) {
        factors[N] = 1;
    }
    return factors;
}
The prime factors can be quite useful.
The prime factors can be quite useful.

- The number of divisors

\[
\sigma_0(n) = \prod_{i=1}^{k} (e_i + 1)
\]
The prime factors can be quite useful.

- The number of divisors

\[ \sigma_0(n) = \prod_{i=1}^{k} (e_1 + 1) \]

- The sum of all divisors in \(x\)-th power

\[ \sigma_m(n) = \prod_{i=1}^{k} \frac{p^{(e_i+1)\times} - 1}{(p_i - 1)} \]
• The Euler's totient function

\[ \phi(n) = n \cdot \prod_{i=1}^{k} (1 - p) \]
• The Euler’s totient function

\[ \phi(n) = n \cdot \prod_{i=1}^{k} (1 - p) \]

• Euler’s theorem, if \( a \) and \( n \) are coprime

\[ a^{\phi(n)} = 1 \pmod{n} \]

Fermat’s theorem is a special case when \( n \) is a prime.
Combinatorics is study of countable discrete structures.
Combinatorics is study of countable discrete structures.

*Generic enumeration problem:* We are given an infinite sequence of sets $A_1, A_2, \ldots A_n, \ldots$ which contain objects satisfying a set of properties. Determine

$$a_n := |A_n|$$

for general $n$. 
Basic counting

• Factorial
  \[ n! = 1 \cdot 2 \cdot 3 \cdots n \]

• Binomial coefficient
  \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \]
Basic counting

- Factorial
  \[ n! = 1 \cdot 2 \cdot 3 \cdots n \]

- Binomial coefficient
  \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \]

Number of ways to choose \( k \) objects from a set of \( n \) objects, ignoring order.
Basic counting

Properties

\[ \binom{n}{k} = \binom{n}{n-k} \]

\[ \binom{n}{0} = \binom{n}{n} = 1 \]

\[ \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \]
Basic counting

Pascal triangle!

\[
\begin{array}{cccccccccccc}
0 \\
(0) \\
1 & 1 \\
(1) \\
2 & 1 & 2 \\
2 & 1 & 2 \\
3 & 3 & 3 & 3 \\
(3) \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 \\
(5) \\
6 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
(7) \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
(9) \\
(10)
\end{array}
\]
How many rectangles can be formed on a $m \times n$ grid?
Example

How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
How many rectangles can be formed on a \( m \times n \) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
Example

How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
  - 2 vertical
  - 2 horizontal
How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
  - 2 vertical
  - 2 horizontal
Example

How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
  - 2 vertical
  - 2 horizontal
- Number of ways we can choose 2 vertical lines

\[ \binom{n}{2} \]
How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
  - 2 vertical
  - 2 horizontal
- Number of ways we can choose 2 horizontal lines

\[
\binom{m}{2}
\]
How many rectangles can be formed on a $m \times n$ grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
  
  - 2 vertical
  - 2 horizontal

- Total number of ways we can form a rectangle

$$\binom{n}{2} \binom{m}{2} = \frac{n!m!}{(n-2)!(m-2)!2!2!} = \frac{n(n-1)m(m-1)}{4}$$
What if we have many objects with the same value?
What if we have many objects with the same value?

- Number of permutations on $n$ objects, where $n_i$ is the number of objects with the $i$-th value. (Multinomial)

$$\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1!n_2!\cdots n_k!}$$
What if we have many objects with the same value?

- Number of permutations on \( n \) objects, where \( n_i \) is the number of objects with the \( i \)-th value. (Multinomial)

\[
\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}
\]

- Number of way to choose \( k \) objects from a set of \( n \) objects with, where each value can be chosen more than once.

\[
\binom{n + k - 1}{k} = \frac{(n + k - 1)!}{k!(n - 1)!}
\]
How many different ways can we divide \( k \) identical balls into \( n \) boxes?
How many different ways can we divide $k$ identical balls into $n$ boxes?

- Same as number of nonnegative solutions to

$$x_1 + x_2 + \ldots + x_n = k$$
How many different ways can we divide $k$ identical balls into $n$ boxes?

- Same as number of nonnegative solutions to

\[ x_1 + x_2 + \ldots + x_n = k \]

- Let’s imagine we have a bit string consisting only of 1 of length $n + k - 1$

\[ \underbrace{1 1 1 1 1 1 1 \ldots 1}_{n+k-1} \]
Example

• Choose \( n - 1 \) bits to be swapped for 0

\[
1\ldots101\ldots10\ldots01\ldots1
\]
Example

- Choose $n - 1$ bits to be swapped for 0

$$1 \ldots 1 01 \ldots 1 0 \ldots 0 1 \ldots 1$$

- Then total number of 1 will be $k$, each 1 representing an each element, and separated into $n$ groups
Example

- Choose $n - 1$ bits to be swapped for 0

\[
\underbrace{1\ldots1}_{x_1} 0 \underbrace{1\ldots1}_{x_2} 0 \ldots 0 \underbrace{1\ldots1}_{x_n}
\]

- Then total number of 1 will be $k$, each 1 representing an each element, and separated into $n$ groups
- Number of ways to choose the bits to swap

\[
\binom{n+k-1}{n-1} = \binom{n+k-1}{k}
\]
How many different lattice paths are there from $(0, 0)$ to $(n, m)$?
How many different lattice paths are there from \((0,0)\) to \((n,m)\)?

- There is 1 path to \((0,0)\)
How many different lattice paths are there from \((0, 0)\) to \((n, m)\)?

- There is 1 path to \((0, 0)\)
- There is 1 path to \((1, 0)\) and \((0, 1)\)
How many different lattice paths are there from \((0, 0)\) to \((n, m)\)?

- There is 1 path to \((0, 0)\)
- There is 1 path to \((1, 0)\) and \((0, 1)\)
- Paths to \((1, 1)\) is the sum of number of paths to \((0, 1)\) and \((1, 0)\).
How many different lattice paths are there from \((0, 0)\) to \((n, m)\)?

- There is 1 path to \((0, 0)\)
- There is 1 path to \((1, 0)\) and \((0, 1)\)
- Paths to \((1, 1)\) is the sum of number of paths to \((0, 1)\) and \((1, 0)\).
- Number of paths to \((i, j)\) is the sum of the number of paths to \((i - 1, j)\) and \((i, j - 1)\).
Example

How many different lattice paths are there from \((0,0)\) to \((n,m)\)?

- There is 1 path to \((0,0)\)
- There is 1 path to \((1,0)\) and \((0,1)\)
- Paths to \((1,1)\) is the sum of number of paths to \((0,1)\) and \((1,0)\).
- Number of paths to \((i,j)\) is
  \[
  \binom{i+j}{i}
  \]
What if we are not allowed to cross the main diagonal?

The number of paths from \((0,0)\) to \((n,m)\) is given by

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]

The \(C_n\) are known as Catalan numbers.

Many problems involve solutions given by the Catalan numbers.
What if we are not allowed to cross the main diagonal?

- The number of paths from \((0,0)\) to \((n,m)\)

\[ C_n = \frac{1}{n+1} \binom{2n}{n} \]
What if we are not allowed to cross the main diagonal?

- The number of paths from \((0, 0)\) to \((n, m)\)

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]

- \(C_n\) are known as Catalan numbers.
- Many problems involve solutions given by the Catalan numbers.
• Number of different ways \( n + 1 \) factors can be completely parenthesized.

\[
(((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d) \quad a(b(cd))
\]
• Number of different ways $n + 1$ factors can be completely parenthesized.

$$(((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d) \quad a(b(cd))$$

• Number of stack sortable permutations of length $n$. 
Catalan

- Number of different ways $n + 1$ factors can be completely parenthesized.

\[((ab)c)d\quad (a(bc))d\quad (ab)(cd)\quad a((bc)d)\quad a(b(cd))\]

- Number of stack sortable permutations of length $n$.
- Number of different triangulations convex polygon with $n + 2$ sides.
• Number of different ways $n + 1$ factors can be completely parenthesized.

\[((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d) \quad a(b(cd))\]

• Number of stack sortable permutations of length $n$.
• Number of different triangulations convex polygon with $n + 2$ sides

• Number of full binary trees with $n + 1$ leaves.
• Number of different ways $n + 1$ factors can be completely parenthesized.

\[
((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d)\quad a(b(cd))
\]

• Number of stack sortable permutations of length $n$.
• Number of different triangulations convex polygon with $n + 2$ sides

• Number of full binary trees with $n + 1$ leaves.
• And aloot more.
The Fibonacci sequence is defined recursively as

\[ f_1 = 1 \]
\[ f_2 = 1 \]
\[ f_n = f_{n-1} + f_{n-2} \]
The Fibonacci sequence is defined recursively as

\[
f_1 = 1 \\
f_2 = 1 \\
f_n = f_{n-1} + f_{n-2}
\]

Already covered how to calculate \( f_n \) in \( O(N) \) time with dynamic programming.
The Fibonacci sequence is defined recursively as

\[ f_1 = 1 \]
\[ f_2 = 1 \]
\[ f_n = f_{n-1} + f_{n-2} \]

Already covered how to calculate \( f_n \) in \( O(N) \) time with dynamic programming.
But we can do even better.
Fibonacci as matrix

The Fibonacci sequence can be represented by a vectors

\[
\begin{pmatrix} f_{n+2} \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix}
\]
The Fibonacci sequence can be represented by a vectors

\[
\begin{pmatrix}
  f_{n+2} \\
  f_{n+1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix}
\]

Or simply as a matrix

\[
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}
\]
Fibonacci as matrix

The Fibonacci sequence can be represented by a vectors

\[
\begin{pmatrix}
  f_{n+2} \\
  f_{n+1}
\end{pmatrix} =
\begin{pmatrix}
  1 & 1 \\
  1 & 0
\end{pmatrix}
\begin{pmatrix}
  f_{n+1} \\
  f_n
\end{pmatrix}
\]

Or simply as a matrix

\[
\begin{pmatrix}
  1 & 1 \\
  1 & 0
\end{pmatrix}^n =
\begin{pmatrix}
  f_{n+1} & f_n \\
  f_n & f_{n-1}
\end{pmatrix}
\]

Using fast exponentiation, we can calculate $f_n$ in $O(\log N)$ time.
Fibonacci as matrix

Any linear recurrence

\[ a_n = c_1 a_{n-1} + c_2 a_{n-2} \ldots c_k a_{n-k} \]

can be expressed in the same way

\[
\begin{pmatrix}
  a_{n+1} \\
  a_n \\
  \vdots \\
  a_{n-k}
\end{pmatrix} =
\begin{pmatrix}
  c_1 & c_2 & \ldots & c_k \\
  1 & 0 & \ldots & 0 \\
  \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \ldots & 0
\end{pmatrix}
\begin{pmatrix}
  a_n \\
  a_{n-1} \\
  \vdots \\
  a_{n-k-1}
\end{pmatrix}
\]
Fibonacci as matrix

Any linear recurrence

\[ a_n = c_1 a_{n-1} + c_2 a_{n-2} \cdots c_k a_{n-k} \]

can be expressed in the same way

\[
\begin{pmatrix}
  a_{n+1} \\
  a_n \\
  \vdots \\
  a_{n-k}
\end{pmatrix} =
\begin{pmatrix}
  c_1 & c_2 & \cdots & c_k \\
  1 & 0 & \cdots & 0 \\
  \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
  a_n \\
  a_{n-1} \\
  \vdots \\
  a_{n-k-1}
\end{pmatrix}
\]

With a recurrence relation defined as a linear function of the \( k \) preceding terms the running time will be \( O(k^3 \log N) \).
Game Theory
Game theory is the study of strategic decision making, but in competitive programming we are mostly interested in combinatorial games.
Game theory is the study of strategic decision making, but in competitive programming we are mostly interested in combinatorial games.

*Example:*

- There is a pile of $k$ matches.
- Player can remove 1, 2 or 3 from the pile and alternate on moves.
- The player who removes the last match wins.
- There are two players, and the first player starts.
- Assuming that both players play perfectly, who wins?
We can analyse these types of games with *backward induction*. 
Example

We can analyse these types of games with *backward induction*. We call a state $N$-position if it is a winning state for the next player to move, and $P$-position if it is a winning position for the previous player.

- All terminal positions are $P$-positions.
- If every reachable state from the current one is a $N$-position then the current state is a $P$-position.
- If at least one $P$-position can be reached from the current one, then the current state is a $N$-position.
- A position is a $P$-position if all reachable states form the current one are $N$ position.
Example

Let’s analyse our previous game.
Example

Let’s analyse our previous game.

- The terminal position is a $P$-position.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>$P$</td>
<td></td>
</tr>
</tbody>
</table>
Let’s analyse our previous game.

- The terminal position is a $P$-position.
- The positions reachable from the terminal positions are $N$-positions.
Let’s analyse our previous game.

- The terminal position is a $P$-position.
- The positions reachable from the terminal positions are $N$-positions.
- Position 4 can only reach $N$-positions, therefore a $P$ position.

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \ldots \\
\hline
P & N & N & N & P
\end{array}
\]
Let’s analyse our previous game.

- The terminal position is a $P$-position.
- The positions reachable from the terminal positions are $N$-positions.
- Position 4 can only reach $N$-positions, therefore a $P$ position.
- The next 3 positions can reach the $P$-position 4, therefore they are $N$-positions.
Example

Let’s analyse our previous game.

- The terminal position is a $P$-position.
- The positions reachable from the terminal positions are $N$-positions.
- Position 4 can only reach $N$-positions, therefore a $P$ position.
- The next 3 positions can reach the $P$-position 4, therefore they are $N$-positions.
- And so on.

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \ldots \\
\hline
\end{array}
\]
We can see a clear pattern of the $N$ and $P$ positions in the previous game. – Easy to prove that a position is $P$ if $x \equiv 0 \pmod{4}$. 

• Many games can be analyzed this way.
• Not only one dimensional games.
• What if there are $n$ piles instead of 1?
• What if we can remove 1, 3 or 4?
We can see a clear pattern of the $N$ and $P$ positions in the previous game. – Easy to prove that a position is $P$ if $x \equiv 0 \, (\text{mod } 4)$.

- Many games can be analyzed this way.
- Not only one dimensional games.
We can see a clear pattern of the $N$ and $P$ positions in the previous game. – Easy to prove that a position is $P$ if $x \equiv 0 \pmod{4}$.

- Many games can be analyzed this way.
- Not only one dimensional games.
- What if there are $n$ piles instead of 1?
We can see a clear pattern of the $N$ and $P$ positions in the previous game. – Easy to prove that a position is $P$ if $x \equiv 0 \pmod{4}$.

• Many games can be analyzed this way.
• Not only one dimensional games.
• What if there are $n$ piles instead of 1?
• What if we can remove 1, 3 or 4?
The game called Nim

- There are \( n \) piles, each containing \( x_i \) chips.
- Player can remove from exactly one pile, and can remove any number of chips.
- The player who removes the last match wins.
- There are two players, and the first player starts and they alternate on moves.
- Assuming that both players play perfectly, who wins?
The game called Nim

Nim can be analyzed with $N$ and $P$ position.
Nim can be analyzed with $N$ and $P$ position.

- Not trivial to generalize over $n$ piles.
Nim can be analyzed with \( N \) and \( P \) position.

- Not trivial to generalize over \( n \) piles.
- Luckily someone has already done that for us.
Nim can be analyzed with $N$ and $P$ position.

- Not trivial to generalize over $n$ piles.
- Luckily someone has already done that for us.

Buton’s theorem states that a position $(x_1, x_2, \ldots, x_n)$ in Nim is a $P$-position if and only if the xor over the number of chips is 0.
Nim can be analyzed with $N$ and $P$ position.

- Not trivial to generalize over $n$ piles.
- Luckily someone has already done that for us.

*Buton’s theorem* states that a position $(x_1, x_2, \ldots, x_n)$ in Nim is a $P$-position if and only if the xor over the number of chips is 0. This theorem extends to other sums of combinatorial games!