Strings

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon
Árangursrík forritun og lausn verkefna

School of Computer Science
Reykjavík University
Today we’re going to cover

- String matching
 - Naive algorithm
 - Knuth–Morris–Pratt (KMP) algorithm
- Tries
- Suffix tries
- Suffix trees
- Suffix arrays
String problems

- Strings frequently appear in our kind of problems
 - Reading input
 - Writing output
 - Parsing
 - Identifiers/names
 - Data

- But sometimes strings play the key role
 - We want to find properties of some given strings
 - Is the string a palindrome?

- Here we’re going to talk about things related to the latter type of problems

- These problems can be hard, because the length of the strings are often huge
String matching

• Given a string S of length n,
• and a string T of length m,
• find all occurrences of T in S

• Note:
 • Occurrences may overlap
 • Assume strings contain characters from a constant-sized alphabet
Example:

- $S = \text{cabcababacaba}$
- $T = \text{aba}$
String matching

Example:

- $S = \text{cabcababacaba}$
- $T = \text{aba}$
- Three occurrences:
Example:

- $S = \text{cabcababacaba}
- T = \text{aba}

- Three occurrences:
 - cabcababacaba
Example:

- $S = \text{cabcababacaba}$
- $T = \text{aba}$

- Three occurrences:
 - cabcababacaba
 - cabcababacaba
 - cabcababacaba
Example:

• $S = \text{cabcababacaba}$
• $T = \text{aba}$

• Three occurrences:
 • cabcabcabacaba
 • cabcababacaba
 • cabcababacaba
Naive string matching algorithm

- For each substring of length m in S,
- check if that substring is equal to T.
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcabab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca
Naive string matching algorithm

- S: bacbababaabcocabab
- T: ababaca
Naive string matching algorithm

```cpp
int string_match(const string &s, const string &t) {
    int n = s.size(),
        m = t.size();

    for (int i = 0; i + m - 1 < n; i++) {
        bool found = true;
        for (int j = 0; j < m; j++) {
            if (s[i + j] != t[j]) {
                found = false;
                break;
            }
        }
        if (found) {
            return i;
        }
    }
    return -1;
}
```
Naive string matching algorithm

- Double for-loop
 - outer loop is $O(n)$ iterations
 - inner loop is $O(m)$ iterations worst case
- Time complexity is $O(nm)$ worst case
Naive string matching algorithm

- Double for-loop
 - outer loop is $O(n)$ iterations
 - inner loop is $O(m)$ iterations worst case
- Time complexity is $O(nm)$ worst case
- Can we do better?
The KMP algorithm avoids useless comparisons:

- S: bacbababaabcbab
- T: ababaca
The KMP algorithm avoids useless comparisons:

- \(S: \text{bacbababaabcbab} \)
- \(T: \text{ababaca} \)
Knuth–Morris–Pratt algorithm

- The KMP algorithm avoids useless comparisons:
 - S: bacbababaabcbab
 - T: ababaca
The KMP algorithm avoids useless comparisons:

- S: bacbababaabcbab
- T: ababaca
The KMP algorithm avoids useless comparisons:

- S: bacbabaabcbab
- T: ababaca
The KMP algorithm avoids useless comparisons:

- S: bacbababaabcbab
- T: ababaca
• The KMP algorithm avoids useless comparisons:
 • S: bacbababaabcbab
 • T: ababaca
The KMP algorithm avoids useless comparisons:

- **S**: bacbababaabcbab
- **T**: ababaca

The number of shifts depend on which characters are currently matched.
Knuth–Morris–Pratt algorithm

- How are the number of shifts determined?
- Let $\pi[q] = \max\{k : k < q \text{ and } T[1 \ldots k] \text{ is a suffix of } T[1 \ldots q]\}$
Knuth–Morris–Pratt algorithm

- How are the number of shifts determined?
- Let $\pi[q] = \max\{k : k < q \text{ and } T[1 \ldots k] \text{ is a suffix of } T[1 \ldots q]\}$
- Example:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Knuth–Morris–Pratt algorithm

• How are the number of shifts determined?

• Let $\pi[q] = \max\{k : k < q \text{ and } T[1 \ldots k] \text{ is a suffix of } T[1 \ldots q]\}$

• Example:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

• If, at position i, q characters match (i.e. $T[1 \ldots q] = S[i \ldots i + q - 1]$), then
 • if $q = 0$, shift pattern 1 position right
 • otherwise, shift pattern $q - \pi[q]$ positions right
Knuth–Morris–Pratt algorithm

Example:

- S: bacbabaabcbab
- T: ababaca

5 characters match, so $q = 5$

$\pi[q] = \pi[5] = 3$

Then shift $q - \pi[q] = 5 - 3 = 2$ positions

S: bacbababaabcbab

T: ababaca
Knuth–Morris–Pratt algorithm

- Example:
 - S: bacbabababcababa
 - T: ababaca
 - 5 characters match, so $q = 5$
Knuth–Morris–Pratt algorithm

Example:
- S: bacbababaabcbab
- T: ababaca
- 5 characters match, so $q = 5$
- $\pi[q] = \pi[5] = 3$
Knuth–Morris–Pratt algorithm

- Example:
 - S: bacbababaabcbab
 - T: ababaca
 - 5 characters match, so $q = 5$
 - $\pi[q] = \pi[5] = 3$
 - Then shift $q - \pi[q] = 5 - 3 = 2$ positions
Knuth–Morris–Pratt algorithm

- Example:
 - S: bacbababaabcbab
 - T: ababaca
 - 5 characters match, so $q = 5$
 - $\pi[q] = \pi[5] = 3$
 - Then shift $q - \pi[q] = 5 - 3 = 2$ positions
 - S: bacbababaabcbab
 - T: ababaca
Knuth–Morris–Pratt algorithm

- Given π, matching only takes $O(n)$ time
- π can be computed in $O(m)$ time
- Total time complexity of KMP therefore $O(n + m)$ worst case
int* compute_pi(const string &t) {

 int m = t.size();
 int *pi = new int[m + 1];
 if (0 <= m) pi[0] = 0;
 if (1 <= m) pi[1] = 0;
 for (int i = 2; i <= m; i++) {
 for (int j = pi[i - 1]; ; j = pi[j]) {
 if (t[j] == t[i - 1]) {
 pi[i] = j + 1;
 break;
 }
 if (j == 0) {
 pi[i] = 0;
 break;
 }
 }
 }

 return pi;
}
Knuth–Morris–Pratt algorithm

```c
int string_match(const string &s, const string &t) {
    int n = s.size(),
        m = t.size();

    int *pi = compute_pi(t);

    for (int i = 0, j = 0; i < n; ) {
        if (s[i] == t[j]) {
            i++; j++;
            if (j == m) {
                return i - m;
            }
        } else if (j > 0) j = pi[j];
        else i++;
    }

    delete[] pi;
    return -1;
}
```
Sets of strings

- We often have sets (or maps) of strings
- Insertions and lookups usually guarantee $O(\log n)$ comparisons
- But string comparisons are actually pretty expensive...
- There are other data structures, like tries, which do this in a more clever way
Tries
Tries
struct node {
 node* children[26];
 bool is_end;

 node() {
 memset(children, 0, sizeof(children));
 is_end = false;
 }
};
```c
void insert(node* nd, char *s) {
    if (*s) {
        if (!nd->children[*s - 'a'])
            nd->children[*s - 'a'] = new node();

        insert(nd->children[*s - 'a'], s + 1);
    } else {
        nd->is_end = true;
    }
}
```
bool contains(node* nd, char *s) {
 if (*s) {
 if (!nd->children[*s - 'a'])
 return false;
 return contains(nd->children[*s - 'a'], s + 1);
 } else {
 return nd->is_end;
 }
}
node *trie = new node();

insert(trie, "banani");

if (contains(trie, "banani")) {
 // ...
}
• Time complexity?

• Let k be the length of the string we’re inserting/looking for

• Lookup and insertion are both $O(k)$
• Say we’re dealing with some string S of length n

• Let’s insert all suffixes of S into a trie

• $S = \text{banani}$

 • insert(trie, "banani");
 • insert(trie, "anani");
 • insert(trie, "nani");
 • insert(trie, "ani");
 • insert(trie, "ni");
 • insert(trie, "i");
There are a lot of cool things we can do with suffix tries

Example: String matching

If a string T is a substring in S, then (obviously) it has to start at some suffix of S

So we can simply look for T in the suffix trie of S, ignoring whether the last node is an end node or not

This is just $O(m)$...
String matching is fast if we have the suffix trie for S.

But what is the time complexity of suffix trie construction?

There are n suffixes, and it takes $O(n)$ to insert each of them.

So $O(n^2)$, which is pretty slow.

Can we do better?

There can be up to n^2 nodes in the graph, so this is actually optimal...
- There exists a compressed version of a suffix trie, called a suffix tree.
- It can be constructed in $O(n)$, and has all the features that suffix tries have.
- But the $O(n)$ construction algorithm is pretty complex, a big disadvantage for us.
• A variation of the previous structures
• Can do everything the other structures can do, with a small overhead
• Can be constructed pretty quickly with relatively simple code
Suffix arrays

- Take all the suffixes of S

 banani
 anani
 nani
 ani
 ni
 i

- and sort them

 anani
 ani
 banani
 i
 nani
 ni
Suffix arrays

- We can use this array to do everything that suffix tries can do
- Like string matching
• Let's look for nan

anani
ani
banani
i
nani
ni
• Let's look for nan
• The first letter in the string has to be n, so we can binary search for the range of strings starting with n

anani
ani
banani
i
nani
ni
• Let’s look for nan
• The first letter in the string has to be n, so we can binary search for the range of strings starting with n

nani
ni
Suffix arrays

- Let’s look for nan
- The second letter in the string has to be a, so we can binary search for the range of strings that have a as the second letter

nani
ni
• Let’s look for nan
• The second letter in the string has to be a, so we can binary search for the range of strings that have a as the second letter

nani
Let’s look for nan

The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

nani
• Let’s look for nan
• The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

nani
• Let’s look for nan

• The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

nani

• If there is at least one string left, we have a match
Suffix arrays

- Time complexity?
- For each letter in T, we do two binary searches on the n suffixes to find the new range
- Time complexity is $O(m \times \log n)$
- A bit slower than doing it with a suffix trie, but still not bad
• But how do we construct a suffix array for a string?

• A simple `sort(suffixes)` is $O(n^2 \log(n))$, because comparing two suffixes is $O(n)$

• And we still have the same problem as with suffix tries, there are almost n^2 characters if we store all suffixes
The second problem is easy to fix
Just store the indices of the suffixes

- anani
- ani
- banani
- i
- nani
- ni

- becomes

1: anani
3: ani
0: banani
5: i
2: nani
4: ni
Suffix arrays

• What about the construction?
• In short, we
 • sort all suffixes by only looking at the first letter
 • sort all suffixes by only looking at the first 2 letters
 • sort all suffixes by only looking at the first 4 letters
 • sort all suffixes by only looking at the first 8 letters
 • ...
 • sort all suffixes by only looking at the first \(2^i\) letters
 • ...

• If we use an \(O(n \log n)\) sorting algorithm, this is \(O(n \log^2 n)\)
• We can also use an \(O(n)\) sorting algorithm, since all sorted values are between 0 and \(n\), bringing it down to \(O(n \log n)\)
struct suffix_array {
 struct entry {
 pair<int, int> nr;
 int p;

 bool operator <(const entry &other) const {
 return nr < other.nr;
 }
 };

 string s;
 int n;
 vector<vector<int> > P;
 vector<entry> L;
 vi idx;

 // constructor
};
suffix_array(string _s) : s(_s), n(s.size()) {
 L = vector<entry>(n);
 P.push_back(vi(n));
 idx = vi(n);

 for (int i = 0; i < n; i++) {
 P[0][i] = s[i];
 }

 for (int stp = 1, cnt = 1; (cnt >> 1) < n; stp++, cnt <<= 1) {
 P.push_back(vi(n));
 for (int i = 0; i < n; i++) {
 L[i].p = i;
 L[i].nr = make_pair(P[stp - 1][i], i + cnt < n ? P[stp - 1][i + cnt] : -1);
 }
 sort(L.begin(), L.end());
 for (int i = 0; i < n; i++) {
 if (i > 0 && L[i].nr == L[i - 1].nr) {
 P[stp][L[i].p] = P[stp][L[i - 1].p];
 } else {
 P[stp][L[i].p] = i;
 }
 }
 }

 for (int i = 0; i < n; i++) {
 idx[P[P.size() - 1][i]] = i;
 }
}
There is also one other useful operation on suffix arrays:

- Finding the longest common prefix (lcp) of two suffixes of S

$S = \text{anani}$

- $lcp(1,3) = 2$
- $lcp(2,1) = 0$

This function can be implemented in $O(\log n)$ by using intermediate results from the suffix array construction.
int lcp(int x, int y) {
 int res = 0;
 if (x == y) return n - x;
 for (int k = P.size() - 1; k >= 0 && x < n && y < n; k--) {
 if (P[k][x] == P[k][y]) {
 x += 1 << k;
 y += 1 << k;
 res += 1 << k;
 }
 }
 return res;
}
Longest common substring

- Given two strings S and T, find their longest common substring
 - $S = \text{banani}$
 - $T = \text{kanina}$
 - Their longest common substring is ani

- see example