Data structures and libraries

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna
Today we’re going to cover

- Basic data types
- Big integers
- Why we need data structures
- Data structures you already know
- Sorting and searching
- Using bitmasks to represent sets
- Common applications of the data structures
- Augmenting binary search trees
- Representing graphs
You should all be familiar with the basic data types:

- `bool`: a boolean (true/false)
- `char`: an 8-bit signed integer (often used to represent characters with ASCII)
- `short`: a 16-bit signed integer
- `int`: a 32-bit signed integer
- `long long`: a 64-bit signed integer
- `float`: a 32-bit floating-point number
- `double`: a 64-bit floating-point number
- `long double`: a 128-bit floating-point number
- `string`: a string of characters
Basic data types

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>-32768</td>
<td>32767</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>-2148364748</td>
<td>2147483647</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>-9223372036854775808</td>
<td>9223372036854775807</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>8</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Min value</th>
<th>Max value</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>4</td>
<td>-3.4×10^{-38}</td>
<td>3.4×10^{-38}</td>
<td>≈ 7 digits</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>-1.7×10^{-308}</td>
<td>1.7×10^{-308}</td>
<td>≈ 14 digits</td>
</tr>
</tbody>
</table>
Big integers

- What if we need to represent and do computations with very large integers, i.e. something that doesn’t fit in a `long long`?

- Simple idea: Store the integer as a string

- But how do we perform arithmetic on a pair of strings?

- We can use the same algorithms as we learned in elementary school:
 - Addition: Add digit-by-digit, and maintain the carry
 - Subtraction: Similar to addition
 - Multiplication: Long multiplication
 - Division: Long division
 - Modulo: Long division
Example problem: Integer Inquiry

Why do we need data structures?

- Sometimes our data needs to be organized in a way that allows one or more of
 - Efficient querying
 - Efficient inserting
 - Efficient deleting
 - Efficient updating

- Sometimes we need a better way to represent our data
 - How do we represent large integers?
 - How do we represent graphs?

- Data structures help us achieve those things
Data structures you’ve seen before

- Static arrays
- Dynamic arrays
- Linked lists
- Stacks
- Queues
- Priority Queues
- Sets
- Maps

Usually it's best to use the standard library implementations – Almost surely bug-free and fast – We don't need to write any code

Sometimes we need our own implementation – When we want more flexibility – When we want to customize the data structure
Data structures you’ve seen before

- Static arrays - int arr[10]
- Dynamic arrays - vector<int>
- Linked lists - list<int>
- Stacks - stack<int>
- Queues - queue<int>
- Priority Queues - priority_queue<int>
- Sets - set<int>
- Maps - map<int, int>

Usually it’s best to use the standard library implementations – Almost surely bug-free and fast

Sometimes we need our own implementation – When we want more flexibility – When we want to customize the data structure
Data structures you’ve seen before

- Static arrays - `int arr[10]`
- Dynamic arrays - `vector<int>`
- Linked lists - `list<int>`
- Stacks - `stack<int>`
- Queues - `queue<int>`
- Priority Queues - `priority_queue<int>`
- Sets - `set<int>`
- Maps - `map<int, int>`

- Usually it’s best to use the standard library implementations
 - Almost surely bug-free and fast
 - We don’t need to write any code
- Sometimes we need our own implementation
 - When we want more flexibility
 - When we want to customize the data structure
Sorting and searching

- Very common operations:
 - Sorting an array
 - Searching an unsorted array
 - Searching a sorted array

- Again, usually in the standard library
- We’ll need different versions of binary search later which need custom code, but lower_bound is enough for now
Sorting and searching

► Very common operations:
 – Sorting an array - `sort(arr.begin(), arr.end())`
 – Searching an unsorted array - `find(arr.begin(), arr.end(), x)`
 – Searching a sorted array - `lower_bound(arr.begin(), arr.end(), x)`

► Again, usually in the standard library

► We’ll need different versions of binary search later which need custom code, but `lower_bound` is enough for now
Representing sets

- We have a small \((n \leq 30)\) number of items
- We label them with integers in the range \(0, 1, \ldots, n - 1\)
- We can represent sets of these items as a 32-bit integer
- The \(i\)th item is in the set represented by the integer \(x\) if the \(i\)th bit in \(x\) is 1

Example:
- We have the set \(\{0, 3, 4\}\)
- \(\text{int } x = (1<<0) \mid (1<<3) \mid (1<<4);\)
Representing sets

- Empty set: \(0 \)
- Single element set: \(1^{<<i} \)
- The universe set (i.e. all elements): \((1^{<<n}) - 1 \)
- Union of sets: \(x | y \)
- Intersection of sets: \(x & y \)
- Complement of a set: \(\sim x \ & \ ((1^{<<n}) - 1) \)
Representing sets

- Check if an element is in the set:
  ```c
  if (x & (1<<<i)) {
      // yes
  } else {
      // no
  }
  ```
Representing sets

- Why do this instead of using `set<int>`?
- Very lightweight representation
- All subsets of the n elements can be represented by integers in the range $0 \ldots 2^n - 1$
- Allows for easily iterating through all subsets (we’ll see this later)
- Allows for easily using a set as an index of an array (we’ll see this later)
Applications of Arrays and Linked Lists

- Too many to list
- Most problems require storing data, usually in an array
Example problem: Broken Keyboard

▶ http://uva.onlinejudge.org/external/119/11988.html
Applications of Stacks

- Processing events in a first-in first-out order
- Simulating recursion
- Depth-first search in a graph
- Reverse a sequence
- Matching brackets
- And a lot more
Applications of Queues

► Processing events in a first-in first-out order
► Breadth-first search in a graph
► And a lot more
Applications of Priority Queues

- Processing events in order of priority
- Finding a shortest path in a graph
- Some greedy algorithms
- And a lot more
Applications of Sets

- Keep track of distinct items
- Have we seen an item before?
- If implemented as a binary search tree:
 - Find the successor of an element (the smallest element that is greater than the given element)
 - Count how many elements are less than a given element
 - Count how many elements are between two given elements
 - Find the kth largest element
- And a lot more
Applications of Maps

- Associating a value with a key
- As a frequency table
- As a memory when we’re doing Dynamic Programming (later)
- And a lot more
Augmenting Data Structures

- Sometimes we can store extra information in our data structures to gain more functionality
- Usually we can’t do this to data structures in the standard library
- Need our own implementation that we can customize
- Example: Augmenting binary search trees
Augmenting Binary Search Trees

- We have a binary search tree and want to efficiently:
 - Count number of elements \(< x \)
 - Find the \(k \)th smallest element
- Naive method is to go through all vertices, but that is slow: \(O(n) \)
Augmenting Binary Search Trees

- Idea: In each vertex store the size of the subtree
- This information can be maintained when we insert/delete elements without adding time complexity
Augmenting Binary Search Trees

- Count number of elements < 38
 - Search for 38 in the tree
 - Count the vertices that we pass by that are less than x
 - When we are at a vertex where we should go right, get the size of the left subtree and add it to our count
Augmenting Binary Search Trees

- **Count number of elements < 38**
 - Search for 38 in the tree
 - Count the vertices that we pass by that are less than x
 - When we are at a vertex where we should go right, get the size of the left subtree and add it to our count

- **Time complexity** \(O(\log n)\)
Augmenting Binary Search Trees

- Find kth smallest element
 - We’re on a vertex whose left subtree is of size m
 - If $k = m + 1$, we found it
 - If $k \leq m$, look for the kth smallest element in the left subtree
 - If $k > m + 1$, look for the $k - m - 1$st smallest element in the right subtree
Augmenting Binary Search Trees

- Find kth smallest element
 - We’re on a vertex whose left subtree is of size m
 - If $k = m + 1$, we found it
 - If $k \leq m$, look for the kth smallest element in the left subtree
 - If $k > m + 1$, look for the $m - k - 1$st smallest element in the right subtree

- Example: $k = 11$
Representing graphs

- There are many types of graphs:
 - Directed vs. undirected
 - Weighted vs. unweighted
 - Simple vs. non-simple

- Many ways to represent graphs

- Some special graphs (like trees) have special representations

- Most commonly used (general) representations:
 1. Adjacency list
 2. Adjacency matrix
 3. Edge list
Adjacency list

0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2

vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(2);
adj[3].push_back(2);
Adjacency matrix

```
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0
```

```cpp
bool adj[4][4];
adj[0][1] = true;
adj[0][2] = true;
adj[1][0] = true;
adj[1][2] = true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
adj[3][2] = true;
```
vector<pair<int, int>> edges;
edges.push_back(make_pair(0, 1));
edges.push_back(make_pair(0, 2));
edges.push_back(make_pair(1, 2));
edges.push_back(make_pair(2, 3));
Efficiency

<table>
<thead>
<tr>
<th>Action</th>
<th>Adjacency list</th>
<th>Adjacency matrix</th>
<th>Edge list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>$O(</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Add vertex</td>
<td>$O(1)$</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Add edge</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Remove vertex</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>Remove edge</td>
<td>$O(</td>
<td>E</td>
<td>)$</td>
</tr>
<tr>
<td>Query: are u, v adjacent?</td>
<td>$O(</td>
<td>V</td>
<td>)$</td>
</tr>
</tbody>
</table>

- Different representations are good for different situations
Example problem: Easy Problem from Rujia Liu?

▶ http://uva.onlinejudge.org/external/119/11991.html